

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6674/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

edexcel

January 2008 6674 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Marks
1	Integrating factor = e^{-3x} $\therefore \frac{d}{dx}(ye^{-3x}) = xe^{-3x}$ $\therefore (ye^{-3x}) = \int xe^{-3x} dx = -\frac{x}{3}e^{-3x} + \int \frac{1}{3}e^{-3x} dx$ $= -\frac{x}{3}e^{-3x} - \frac{1}{9}e^{-3x}(+c)$ $\therefore y = -\frac{x}{3} - \frac{1}{9} + ce^{3x}$	B1 M1 M1 A1 A1ft
	5 9	[5]
	Notes: First M for multiplying through by Integrating Factor and evidence of calculus Second M for integrating by parts 'the right way around'. Be generous – ignore wrong signs and wrong constants. Second M dependent on first. Both As dependent on this M. First A1 for correct expression – constant not required Second A requires constant for follow through. If treated as a second order de with errors then send to review.	

edexcel

2.	Use (2x+1) as factor to give $f(x) = (2x+1)(x^2 - 6x + 10)$	M1 A1	
	Attempt to solve quadratic to give $x = \frac{6 \pm \sqrt{(36 - 40)}}{2}$	M1 A1	
	Two complex roots are $=3\pm i$	M1 A1	
			(6)
			[6]
	Notes:		
	First M if method results in quadratic expression with 3 terms (even with remainder).		
	Second M for use of correct formula on their quadratic.		
	Third M for using i from negative discriminant.		
3.			
(a)	Consider $\frac{(x+3)(x+9) - (3x-5)(x-1)}{(x-1)}$, obtaining $\frac{-2x^2 + 20x + 22}{(x-1)}$	M1 A1	
	Factorise to obtain $\frac{-2(x-11)(x+1)}{(x-1)}$.	M1 A1	(4)
(b)	Identify $x = 1$ and their two other critical values	B1ft	
	Obtain one inequality <i>as an answer</i> involving at least one of their critical values To obtain $x < -1$, $1 < x < 11$	M1 A1, A1	
			(4) [8]
	Notes:		
	Second M attempt to factorise quadratic expression with 3 terms (usual rules).		
	Second A don't require -2 outside but can be part of factors.		

	edex	cel	
4. (a)	f(0.7) = -0.195028497 and $f(0.8) = 0.297206781$	B1, B1	
	Use $\frac{0.8 - \alpha}{\alpha - 0.7} = \frac{f(0.8)}{-f(0.7)}$ to obtain $\alpha = \frac{-0.8f(0.7) + 0.7f(0.8)}{f(0.8) - f(0.7)}$ (=0.739620991) =0.740 Answer required to 3 dp or better	M1 A1	
(b)	$f'(x) = 6x + 1 - \frac{1}{2}\sec^2(\frac{x}{2})$ Use $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)}$ (= 0.741087218)=0.741 Answer required to 3 dp or better	M1 A1 M1 A1	(4) (4) [8]
	Notes:		
	(a) Bs for 3dp or better		
	First M for reasonable attempt using fractions and differences.		
	(b) First M attempt to differentiate $f(x)$, term in x is enough.		
	Lose last A if either or both not to 3 dp		

Question Number	Scheme	Marks
5. (a)	Method to obtain partial fractions e.g. $5r + 4 = A(r+1)(r+2) + Br(r+2) + Cr(r+1)$ And equating coefficients, or substituting values for <i>x</i> .	M1
	$A = 2, B = 1, C = -3 \text{ or } \frac{2}{r} + \frac{1}{r+1} - \frac{3}{r+2}$	A1 A1 A1 (4)
(b)	$\sum_{r=1}^{n} \dots = \frac{2}{1} + \frac{1}{2} - \frac{3}{3}$ $+ \frac{2}{2} + \frac{1}{3} - \frac{3}{4}$ $+ \frac{2}{3} + \frac{1}{4} - \frac{3}{5} = 2 + \frac{3}{2}, -\frac{2}{n+1} - \frac{3}{n+2} \text{ or equivalent}$ $+ \dots$ $+ \frac{2}{n-1} + \frac{1}{n} - \frac{3}{n+1}$ $+ \frac{2}{n} + \frac{1}{n+1} - \frac{3}{n+2}$	M1 A1, A1
	$=\frac{7(n+1)(n+2)-4(n+2)-6(n+1)}{2(n+1)(n+2)}=\frac{7n^2+11n}{2(n+1)(n+2)}*$	M1 A1 (5)
	 Notes: (a) Require three constants for method. (b) Require first 3 and last 2 of their terms for first method Second method - dependent on first - for attempt to combine to single fraction. Expansion of (n+1)(n+2) in numerator and correct solution required for final A1 	

Question Number	Scheme	Marks
6(a)	(i) Multiply top and bottom by conjugate to give $\frac{-2-i}{5}$ (ii) Expand and simplify using $i^2 = -1$ to give $3-4i$	M1 A1 M1 A1
(b)	$ z^2 - z = 5 - 5i, z^2 - z = 5\sqrt{2} *$	(4) M1A1 (2)
(c)	$\arg(z^2 - z) = -\frac{\pi}{4}$ or -45^0 or $7\pi/4$ or 315^0 or -0.7853 or 5.497	(2) M1 A1 (2)
(d)		B1, B1 ft (2)
	one mark for each point	[10]
	 Notes: (a) -2-i or 2+i OK for method. Attempt to expand required. (b) square root required for method (c) 2 for correct answer only, tan required for method. 2dp or better. (d) Position of points not clear but both quadrants correct first B1 only. 	

Question Number	Scheme	Marks
7 (a)	Solve auxiliary equation $3m^2 - m - 2 = 0$ to obtain $m = -\frac{2}{3}$ or 1 C.F is $Ae^{-\frac{2}{3}x} + Be^x$ Let $PI = \lambda x^2 + \mu x + v$. Find $y' = 2\lambda x + \mu$, and $y'' = 2\lambda$ and substitute into d.e. Giving $\lambda = -\frac{1}{2}$, $\mu = \frac{1}{2}$ and $v = -\frac{7}{4}$ $\therefore y = -\frac{1}{2}x^2 + \frac{1}{2}x - \frac{7}{4} + Ae^{-\frac{2}{3}x} + Be^x$	M1 A1 A1ft M1 A1 A1A1 A1ft (8)
(b)	Use boundary conditions: $2 = -\frac{7}{4} + A + B$ $y' = -x + \frac{1}{2} - \frac{2}{3}Ae^{-\frac{2}{3}x} + Be^{x} \text{ and } 3 = \frac{1}{2} - \frac{2}{3}A + B$ Solve to give $A = 3/4$, $B = 3$ ($\therefore y = -\frac{1}{2}x^{2} + \frac{1}{2}x - \frac{7}{4} + \frac{3}{4}e^{-\frac{2}{3}x} + 3e^{x}$)	M1A1ft M1 M1 M1 A1 (6) [14]
	 Notes: (a) Attempt to solve quadratic expression with 3 terms (usual rules) Both values required for first accuracy. Real values only for follow through Second M 3 term quadratic for PI required Final A1ft for their CF+ their PI dependent upon at least one M (b) Second M for attempt to differentiate their <i>y</i> and third M for substitution 	

Question Number	Scheme	Marks
8 (a)	$a(3+2\cos\theta) = 4a$ Solve to obtain $\cos\theta = \frac{1}{2}$ $\theta = \pm \frac{\pi}{3}$ and points are $(4a, \frac{\pi}{3})$ and $(4a, \frac{5\pi}{3})$	M1 M1 A1, A1 (4)
(b)	Use area $= \frac{1}{2} \int r^2 d\theta$ to give $\frac{1}{2} a^2 \int (3 + 2\cos\theta)^2 d\theta$ Obtain $\int (9 + 12\cos\theta + 2\cos 2\theta + 2)d\theta$ Integrate to give $11\theta + 12\sin\theta + \sin 2\theta$ Use limits $\frac{\pi}{3}$ and π , then double or $\frac{\pi}{3}$ and $\frac{5\pi}{3}$ or theirs Find a third area of circle $=\frac{16\pi a^2}{3}$ Obtain required area $=\frac{38\pi a^2}{3} - \frac{13\sqrt{3}a^2}{2}$	M1 A1 M1 A1 M1 B1 A1,A1 (8)
(c)	correct shape 5a and 4a marked 2a marked and passes through O	B1 B1 B1 (3) [15]
	 Notes: (a) First A for r=4a second for both values in radians. Accept 1.0471and 5.23592 dp or better for final A (b) First M for substitution, expansion and attempt to use double angles. Second M for integrating expression of the form a+bcosθ+ccos2θ Lose final A only if a² missing in last line (c) First B for approximately symmetrical shape about initial line, only 1 loop which is convex strictly within shaded region 	